4. Berwick's Problem of the Seven Sevens

In the following division problem, in which the divisior goes into the dividend without a remainder, the numbers that occupied the places marked with the asterisks were accidentally erased. What are the missing numbers?

*	*	7	*	*	*	*	*	*	*	÷	÷ *	÷ * *	÷ * * *	÷ * * * *	÷ * * * * 7	÷ * * * * 7 *	÷ * * * * 7 * =	$\div * * * * * 7 * = *$	\div * * * * 7 * = * *	$\div * * * * 7 * = * * 7$	\div * * * * 7 * = * * 7 *
*	*	*	*	*	*	_															
*	*	*	*	*	7	*															
*	*	*	*	*	*	*															
		*	7	*	*	*	*														
		*	7	*	*	*	*														
		*	*	*	*	*	*	*													
		*	*	*	*	7	*	*													
				*	*	*	*	*	*												
				*	*	*	*	*	*												

This remarkable problem comes from the English mathematician E.H.Berwick, who published it in 1906 in the periodical *The School World*.

Solution. We will assign a separate letter to each of the missing numerals. In addition we set ∂ equal to the divisor. The problem then has the following appearance:

Α	В	7	С	D	Ε	L	Q	W	Z.	÷	α	β	γ	δ	7	ε	=	к	λ	7	μ	v
а	b	Δ	с	d	е																	
F	G	Η	Ι	K	7	L											line 3					
f	g	h	i	k	Ξ	l											line 4					
		М	7	Ν	0	Р	Q										line 5					
		т	7	п	0	р	q										7•∂					
		R	S	Т	U	Σ	V	W									line 7					
		r	S	t	и	7	v	w	_								line 8					
				X	Y	Ζ	x	у	z.								line 9					
				X	Y	Ζ	x	у	z.	_												

1. The *first* numeral α of the divisor ∂ must be 1, since 7∂ , as line 6 shows, has six numerals, whereas if $\alpha \ge 2$, 7∂ would have seven numerals.

Since the remainders in lines 3 and 7 have *six* numerals, F = 1 and R = 1, as a result of which f = r = 1. [If $F \ge 2$, the leading digit in the quotient would be larger than κ , because ∂ would "go into" *FGHIK*7.]

Since $\partial \le 199979$ and $\mu \le 9$, the product in line 8 $\mu \partial \le 1799811$, and s < 8. S = 0 or 9 [from the two lines above], and since there is no remainder in line 9

and	fror	n lir	ie 6,	,7∂	≤ 8	7no	pq.	The	e pro	oble	m lo	ooks	; like	e the	e fol	owi	ng now:		_			
A	В	7	С	D	Ε	L	Q	W	Z.	÷	1	β	γ	δ	7	Е	=	к	λ	7	μ	v
а	b	Δ	С	d	е																	
1	G	Η	Ι	K	7	L											line 3					
1	g	h	i	k	[1]	l	_										line 4					
		М	7	N	0	Р	Q										line 5					
		т	7	п	0	р	q	_									7 • ∂					
		1	0	Т	U	Σ	V	W									line 7					
		1	0	t	и	7	v	w									line 8					
				X	Y	Ζ	x	у	z								line 9					
				X	Y	Ζ	x	у	Z.													

under s, S = 0 and s = 0. It also follows from RS = 10 that M = m + 1 and $m \le 8$,

2. Since $7 \times 130000 > 87nopq$, $\beta = 0, 1 \text{ or } 2$. $\beta = 0$ can be eliminated since $9 \times 109979 = 989811$ is not a seven digit number, a requirement of line 8. Now consider $\beta = 1$. This requires $\gamma = 0 \text{ or } 1$; $\gamma \ge 2$ would result in a "carry" from the product 7γ to $7\beta = 7$, but the second digit (from the left) in 7∂ is 7.

 $\gamma = 0$, however is impossible as a result of the seven figures in the product in line 8, since even $9 \times 110979 = 998811$ has just six digits.

 $\underline{\gamma = 1}$ gives $\partial = 111\delta7\varepsilon$. Line 8 shows that the product $\mu\partial$ is a seven digit number, but $8 \times 111979 = 895832$ is a six digit number. Thus $\mu = 9$ in case $\gamma = 1$. If $\varepsilon < 8$, then the hundreds digit in $\mu\partial$ is $9\delta + 6 \mod 10$ and this is 7 if and only if $\delta = 9$. If $\varepsilon = 8$ or 9, then the hundreds digit in $\mu\partial$ is $9\delta + 7 \mod 10$ and this is 7 if and only if $\delta = 0$. If $\delta = 0$ however, $\mu\partial \le 9 \times 111079 = 999711$, a six digit number whereas line 8 requires a seven digit number. If $\delta = 9$, line 6 states that $7\partial = 7 \times 11197 = 783 * * *$, contrary to 7 being the second digit (from the left). Thus the case of $\gamma = 1$ is also excluded, and the possibility of

 $\beta = 1$ must be discarded.

The only suitable value for β is thus $\beta = 2$. Hence $\partial = 12\gamma \delta 7\epsilon$. $7\partial = m7nopq$ from line 6, and $m \le 8$, as was established earlier, so it follows that m = 8 and M = 9. The problem looks like the following now:

Α	В	7	С	D	Ε	L	Q	W	Z.	÷	1	2	γ	δ	7	Е	=	к	λ	7	μ	v
а	b	Δ	с	d	е																	
1	G	Η	Ι	K	7	L											line 3					
1	8	h	i	k	Ξ	l											line 4					
		9	7	Ν	0	Р	Q										line 5					
		8	7	n	0	p	q										7•∂					
		1	0	Т	U	Σ	V	W									line 7					
		1	0	t	и	7	v	w									line 8					
				X	Y	Ζ	x	у	z.								line 9					
				X	Y	Ζ	x	y	Z.	_												

3. The *third* figure γ of ∂ can only be 4 or 5, since $7 \times 126070 = 882490$ is greater than line 6, and $7 \times 123979 = 867853$ is smaller than line 6. Moreover, since $9 \times 124070 = 1116630$ is greater than line 8 and $7 \times 125979 = 881853$ is smaller than line 8, $\mu = 8$.

Since $8 \times 124979 = 999832 < 1000000$, the assumption that $\gamma = 4$ fails to satisfy the requirements of line 8, and therefore $\gamma = 5$. The problem looks like the following now:

Α	В	7	С	D	Ε	L	Q	W	Z.	÷	1	2	5	δ	7	Е	=	К	λ	7	8	v
a	b	Δ	С	d	е	_																
1	G	H	Ι	K	7	L											line 3					
1	g	h	i	k	Ξ	l											line 4					
		9	7	Ν	0	Р	Q										line 5					
		8	7	n	0	p	q										7•∂					
		1	0	Т	U	Σ	V	W									line 7					
		1	0	t	и	7	v	w									line 8					
				X	Y	Ζ	x	у	Z								line 9					
				X	Y	Ζ	x	y	Z.	_												

4. The hundreds digit of $8 \times 125\delta7\varepsilon$ is $8\delta + 5 \mod 10$ ($\varepsilon \le 4$) or $8\delta + 6 \mod 10$ ($5 \le \varepsilon \le 9$), which is 7 from line 8. Thus $\delta = 4$ or 9. $\delta = 9$ can be eliminated because $7 \times 125970 = 881790$ is greater than line 6, so that only $\delta = 4$ is suitable. It then follows that $\varepsilon \le 4$. For each of these ε values $7 \times 12547\varepsilon = 878 * * *$, so n = 8. Similarly, $8 \times 12547\varepsilon = 10037 * *$, so tu = 03 from line 8.

Since $\lambda \partial = \lambda \times 12547\varepsilon$ results in a seven digit fourth line, and only 8∂ and 9∂ have seven places, $\lambda = 8$ or 9. The problem looks like the following now:

A	В	7	С	D	Ε	L	Q	W	Z.	÷	1	2	5	4	7	Е	=	к	λ	7	8	V
a	b	Δ	С	d	е																	
1	G	H	Ι	K	7	L											line 3					
1	g	h	i	k	Ξ	l											line 4					
		9	7	Ν	0	Р	Q										line 5					
		8	7	8	0	р	q										$7 \cdot \partial$					
		1	0	Т	U	Σ	V	W									line 7					
		1	0	0	3	7	v	W									line 8					
				X	Y	Ζ	x	у	z								line 9					
				X	Y	Ζ	x	у	z.	_												

5. Since $X \ge 1$, it follows that $T \ge 1$, and since $N \le 9$, $T \le 1$; thus T = 1. Then N = 9 and X = 1. Since $2\partial > 200000 > XYZxyz$, it follows that v = 1 and also that $YZxyz = 2547\varepsilon$. With the results obtained at this point, the problem has the following appearance:

A	В	7	С	D	Ε	L	Q	W	Е	÷	1	2	5	4	7	Е	=	к	λ	7	8
а	b	Δ	С	d	е																
1	G	H	Ι	K	7	L											line 3				
1	g	h	i	k	Ξ	l											line 4				
		9	7	9	0	Р	Q										line 5				
		8	7	8	0	р	q										$7 \cdot \partial$				
		1	0	1	U	Σ	V	W									line 7				
		1	0	0	3	7	v	w									line 8				
				1	2	5	4	7	Е								line 9				
				1	2	5	4	7	Е	_											

6.	From line 8	(8∂), line 6 (7∂), and line 4	$(\lambda \partial)$, we have the	possibilities:
----	-------------	------------------	---------------	------------------------------------	----------------

Е	0	1	2	3	4
VW	60	68	76	84	92
opq	290	297	304	311	318
$\exists l \text{ when } \lambda = 8$	60	68	76	84	92
$\exists l \text{ when } \lambda = 9$	30	39	48	57	66

This presents us with ten different (ε , λ) possibilities. If we test each of them by going upward in three successive additions from lines 9 and 8 to line 7, then from lines 7 and 6 to line 5, and finally from lines 5 and 4 to line 3, the only one that gives the required 7 in line 3 is $\varepsilon = 3$ and $\lambda = 8$. In this case vw = 84, $U\Sigma VW = 6331$, opq = 311, OPQ = 944, $ghik\Xi l = 003784$ and GHIK7L = 101778. This gives the problem the following appearance:

Α	В	7	С	D	Ε	8	4	1	3	÷	1	2	5	4	7	3	=	к	8	7	8	1
a	b	Δ	С	d	е																	
1	1	0	1	7	7	8											line 3					
1	0	0	3	7	8	4											line 4					
		9	7	9	9	4	4										line 5					
		8	7	8	3	1	1										7•∂					
		1	0	1	6	3	3	1									line 7					
		1	0	0	3	7	8	4	_								line 8					
				1	2	5	4	7	3								line 9					
				1	2	5	4	7	3	_												

7. Finally, since of all the multiples of ∂ , only $5\partial = 627365$ added to 110177 of line 3 gives a number containing a 7 in the third place (from the left), we get $\kappa = 5$. [A spreadsheet is useful here.] At the same time, we conclude that $ab\Delta cde = 627365$ and ABC7CDE = 737542, which gives us all of the missing numerals.

1

7	3	7	5	4	2	8	4	1	3	÷	1	2	5	4	7	3	=	5	8	7	8	1
6	2	7	3	6	5																	
1	1	0	1	7	7	8											line 3					
1	0	0	3	7	8	4											line 4					
		9	7	9	9	4	4										line 5					
		8	7	8	3	1	1										7•∂					
		1	0	1	6	3	3	1									line 7					
		1	0	0	3	7	8	4									line 8					
				1	2	5	4	7	3								line 9					
				1	2	5	4	7	3	_												